- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Augustine, John (1)
-
Hourani, Khalid (1)
-
Molla, Anisur Rahaman (1)
-
Pandurangan, Gopal (1)
-
Pasic, Adi (1)
-
Peskin, Charles S. (1)
-
Xu, Shubo (Gabriel) (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
Ragusa, Maria Alessandra (2)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Ragusa, Maria Alessandra (Ed.)We study scheduling mechanisms that explore the trade-off between containing the spread of COVID-19 and performing in-person activity in organizations. Our mechanisms, referred to as group scheduling , are based on partitioning the population randomly into groups and scheduling each group on appropriate days with possible gaps (when no one is working and all are quarantined). Each group interacts with no other group and, importantly, any person who is symptomatic in a group is quarantined. We show that our mechanisms effectively trade-off in-person activity for more effective control of the COVID-19 virus spread. In particular, we show that a mechanism which partitions the population into two groups that alternatively work in-person for five days each, flatlines the number of COVID-19 cases quite effectively, while still maintaining in-person activity at 70% of pre-COVID-19 level. Other mechanisms that partitions into two groups with less continuous work days or more spacing or three groups achieve even more aggressive control of the virus at the cost of a somewhat lower in-person activity (about 50%). We demonstrate the efficacy of our mechanisms by theoretical analysis and extensive experimental simulations on various epidemiological models based on real-world data.more » « less
-
Xu, Shubo; Peskin, Charles S. (, PLOS ONE)Ragusa, Maria Alessandra (Ed.)Based on von Neumann’s model of an economy characterized by processes and goods, we add to that model a component representing capital equipment. We assume that the need for capital equipment by any process is proportional to the rate at which that process is running, and therefore an increase in rate requires that capital equipment be purchased, whereas a decrease in rate allows capital equipment to be sold. We thereby construct a continuous-time dynamical model, which we use to investigate the evolution of economic diversity under two price equilibrium scenarios: the first with non-negative prices and non-positive excess demands; the second with enforced market clearing and with prices allowed to be negative. The second scenario represents an economy in which recycling is required, so that excess supply cannot be discarded. We prove that at any time during the progression of the model economy, the solution to each of the two price equilibrium problems exists, and that non-uniqueness of the solution, if any, does not affect the development of the model economy. We compare matched model economies under the two scenarios by simulating their respective evolutions. In each case, the model economy experiences a process of selection and matures to a state of balanced growth, with a higher growth rate when excess supply is discarded, but with greater economic diversity with enforced recycling. The robustness of these qualitative results is demonstrated by repeated trials of simulations on matched pairs of model economies with different randomly chosen parameters.more » « less
An official website of the United States government
